
1

Networked Cloud Orchestration:
A GENI Perspective.

Ilia Baldine, Yufeng Xin, Anirban Mandal, Chris Heermann
RENCI, UNC-CH

Jeff Chase, Varun Marupadi, Aydan Yumerefendi
Department of Computer Science, Duke University

David Irwin
University of Massachusetts, Amherst

Abstract—This paper describes the experience of developing

a system for creation of distributed linked configurations of

heterogeneous resources (slices) in GENI. Our work leverages

a number of unique architectural solutions (distributed ar-

chitecture, declarative resource specifications, unique approach

to slice instantiation) which is applicable to a wider set of

problems related to autonomic co-scheduling and provisioning of

heterogeneous networked resources. We discuss the architecture,

the resource description mechanisms and some of the algorithms

used to enable our system. We conclude with an analysis of a

real experiment at allocating resources from multiple providers

across a very wide geographic area (spanning Massachusetts,

Illinois and North Carolina) to create a single private Layer 2

network connecting virtual machines on the campus of Duke

University to a sensor testbed at University of Massachusetts,

Amherst.

I. INTRODUCTION

Pervasive virtualization at the edge and in the network
core drives the evolution of the IT infrastructure towards a
service-oriented model [1]. It permits a move from static
arrangements of resources that persist over long periods of
time to highly dynamic arrangements that respond to the needs
of customers by dynamically provisioning necessary network
and edge resources with some notion of optimality. Clouds
are one type of virtualized service offered as a unified hosting
substrate for diverse applications, using various technologies
to virtualize servers and orchestrate their operation. Emerging
cloud infrastructure-as-a-service efforts include Eucalyptus,
Nimbus, Tashi, OpenCirrus, and IBM’s Blue Cloud. Extending
cloud hosting into the network is a crucial step to enable on-
demand allocation of complete networked IT environments.

Other types of ”substrate” - storage and networks, are
also developing control approaches that allow them to be
subdivided and/or virtualized and are offering those capa-
bilities through various control interfaces. Various existing
storage virtualization system, either host-based, device-based
or network-based, present the user a logical interface to the
storage space and handle the mapping to the physical devices.
In network virtualization mechanisms (circuits, wavelengths
etc) are exposed via control planes such as MPLS, GMPLS,
DOE IDC/OSCARS, NLR’s Sherpa, Internet2’s DRAGON
and the emerging work on standardized network interface
through OGF NSI.

The next frontier in this work is enabling the creation of
cloud networks: orchestrated arrangements of heterogeneous

resources (compute, storage, networks, content, scientific in-
struments etc.), through a single interface. Some work is
ongoing in this area [2], [3], [4] primarily centered around
connecting specific substrate types, like Grids across dynamic
circuit networks. In this paper we present an alternative
approach, with a meta control architecture designed indepen-
dently of any a priori substrate assumptions and capable of
driving multiple heterogeneous substrates using their native
control/management interfaces and creating orchestrated ar-
rangements of these resources acquired from multiple inde-
pendent providers.

This paper reports on a RENCI-Duke collaboration
(http://geni-orca.renci.org) to build a testbed for the Global
Environment for Network Innovation (GENI) Initiative re-
cently launched by the National Science Foundation and
managed by BBN. GENI (http://www.geni.net) is an ambitious
futuristic vision of Infrastructure as a Service as a platform
for research in network science and engineering. A key
goal of GENI is to enable researchers to experiment with
radically different forms of networking by running exper-
imental systems within private isolated slices of a shared
testbed substrate. A GENI slice gives its owner control over
some combination of virtualized substrate resources collected
from different providers and assigned to the slice, which
may include virtual servers, storage, programmable network
elements, networked sensors, mobile/wireless platforms, and
other programmable infrastructure components attached to the
cloud network. GENI slices are built-to-order for the needs of
each experiment.

We focus on progress in building a unified control frame-
work for a prototype GENI facility incorporating RENCI’s
metro-scale network testbed called BEN (Breakable Experi-
mental Network) [5] with available edge substrates, such as
computational resources and various testbeds (primarily sensor
and wireless) also complemented by experimental national
network backbone (National Lambda Rail, NLR). Each of
these resources has distinct attributes and uses different control
mechanisms. Our control framework, called ORCA (for Open
Resource Control Architecture) unifies these multiple disparate
mechanisms under a single architecture and enables autonomic
control of these heterogeneous resources belonging to different
providers. For this reason, we believe our results are applicable
to a wider set of problems and audiences beyond GENI that

are related to autonomic co-scheduling and provisioning of
heterogeneous networked systems.

We have recently demonstrated a key milestone: on-demand
creation of complete end-to-end slices which include resources
allocated at multiple sites (RENCI, Duke, and UNC, UMass
Amherst). Inside the slices edge resources (compute cloud and
sensor testbed) are connected via private IP network, which
is configured on top of VLANs. VLANs are dynamically in-
stantiated from multiple independent network providers (BEN,
NLR Framenet and campus providers) and stitched together to
form a single circuit. In the context of GENI, this capability
enables a researcher to conduct safe, reproducible experiments
with arbitrarily modified network protocol stacks on a private
isolated network that meets defined specifications for the
experiment. It also has wider implications of demonstrating
architectural concepts for a system capable of managing
networked heterogeneous resources and creating purpose-built
configurations out of those resources.

II. A CONTROL FRAMEWORK FOR HETEROGENEOUS
RESOURCE CONTROL

Our ultimate goal is to manage the network substrate as a
first-class resource that can be co-scheduled and co-allocated
along with other resources, to instantiate a complete built-
to-order network slice hosting a guest application, service,
network experiment, or software environment. The networked
cloud hosting substrate can incorporate network resources
from multiple transit providers and server hosting or other
resources from multiple edge sites (a multi-domain substrate).
In the long term we see adding scientific instruments, digital
content and datasets, in-slice measurement capabilities and
other unique substrate types into the mix.

The two primary challenges we are addressing in our work
are that (a) the resources can come from different independent
providers and (b) that resource types are heterogeneous. The
providers may choose to contribute some subset of their
total resources to a pool, from which configurations can be
drawn to create ‘slices’ for experiments, computations or other
distributed activities. The process of creating a slice is fully au-
tonomic and includes computing a feasible configuration based
on user request, co-scheduling the resources from multiple
providers and configuring allocated resources for the specific
task (an example may be installing a specific OS image on
bare hardware or into VM).

Our control framework software is based on the Open
Resource Control Architecture (ORCA) [6], [7], [8], [9], [10],
[11], an extensible platform for dynamic “leasing” of resources
in a shared infrastructure. The ORCA platform is in open-
source release as a candidate control framework for GENI,
and is also a basis for ongoing research on secure cloud
computing and autonomic hosting systems. ORCA approaches
the described challenges using a combination of architectural
solutions.

The basic structure of the framework is shown in Figure 1.
Substrate providers are represented by site actors, which se-
curely delegate their resources to one or more brokers. Brokers
are containers for resource allocation policies. User requests

BROKER

BROKERBROKER

SITE SITE SITE SITE

DE
LE
G
AT
E

REQ
UES

T

REDEEM

USER

NETWORK/
TRANSIT

NETWORK
/EDGE

COMPUTE
STORAGE

Fig. 1. ORCA architecture.

for various resources to brokers are satisfied in the form of
tickets, which are then presented by the user to different sites
in redeem operation. Sites then allocate and configure re-
sources described in tickets. Users can also perform additional
configuration actions on the issued slices to further customize
the substrate to their needs. All messages are cryptographically
signed to ensure a verifiable resource delegation path (from
sites, to brokers, to users). Any number of actors can be
present in the system and they communicate with each other
using pre-defined messaging primitives. Various arrangements
of brokers are possible, ranging from fully centralized to
fully distributed (requiring distributed agreement to support
resource co-scheduling).

This distributed architecture answers well to the challenge
of distributed independent resource providers. We have iden-
tified a number of problems associated with the challenge
of resource heterogeneity. The first is making the control
framework understand and reason about the available sub-
strate, i.e. being able to match user requests based on either
specific or vague descriptions of a desired configuration to
the available substrate. This includes the ability to easily
extend the approach to new resource types as they become
available. Second is the problem we generally refer to as
‘stitching’ - connecting different pieces of substrate from
different providers together into a single slice. These are the
two problems we are concentrating on and our approaches to
them are described in this article.

There are many related questions that can be asked of the
control framework, such as: How to protect the security and
integrity of each provider’s infrastructure, and protect hosting
providers from abuse by the hosted guests? How to verify that
a slice built to order for a particular guest is in fact behaving
as expected? How to ensure isolation of different guest slices
hosted on the same substrate? How to provide connectivity
across slices when connectivity is desired, and police the flow
of traffic? How to efficiently abstract resource representations
to make inter-domain path computation scalable? We leave
these as a subject of ongoing and future studies.

III. LANGUAGE AND POLICIES FOR HETEROGENEOUS
RESOURCES

One focus of the project is to advance standards and repre-
sentations for describing network cloud substrates. The current
dominant form of information exchange for resource allocation
systems is based on XML and XML schema. However, XML
schemas only define the syntax to the resource description
and lack a formal way to specify the semantics. Recent
developments in Semantic Web technologies enable machine
comprehension of resource descriptions and automatic ser-
vice provisioning (discovery, composition, and interoperabil-
ity) [12]. Declarative semantic resource descriptions represent
an alternative to the XML-based specifications [13]. They
express the knowledge about the world by stating relationships
between the elements of the world and rely on dictionaries of
terms (referred to as ontologies), their attributes and the types
of relationships and constraints on them. RDF-based models
easily support the merging of descriptions of various substrates
based on different dictionaries.

There is a need for a common declarative language that
can represent multi-layered physical network substrate, com-
plex requests for network slices, and the virtualized network
resources (e.g., linked circuits and VLANs) leased for a
slice, i.e., allocated and assigned to a slice. Ideally, we could
specify all substrate-specific details declaratively, so that we
can incorporate many diverse substrates into a network cloud
based on a general-purpose control framework and resource
leasing core. Rich declarative resource specifications present
a layer of abstraction between service providers and users on
one side and the control framework on the other. Critically,
the same representation should be used by users requesting
resources from brokers to describe the desired configuration,
for substrate advertisements by substrate owners, and for slice
specification returned by substrate owners to the users.

Declarative representations are difficult in this domain be-
cause of the need to express complex relationships among
components (e.g., network adjacency), properties and con-
straints of each network level, and constraints involving mul-
tiple levels. Our approach extends the Network Description
Language (NDL [14]). NDL representations are documents
in RDF (Resource Description Framework), a way of de-
scribing sets of objects and their properties and relationships
(predicates). NDL is an ontology: a set of resource types and
relationships (properties or predicates) that make up a vocab-
ulary for describing complex multi-layered networks in RDF.
NDL is based on ITU-T G.805 abstraction for connection-
oriented networks [15]. An NDL document uses the NDL
vocabulary to specify a set of resource elements (in this case
links, nodes, interfaces and layer adaptations) and relationships
among them, whose meanings are defined by NDL. NDL has
been shown to be useful for describing heterogeneous optical
network substrates (GLIF) and identifying candidate cross-
layer paths through those networks [16], [17].

Figure ?? demonstrates the complexity of the problem. To-
day’s optical network consists of multiple layers (fiber, optical
transport, layers 2 and 3) with adaptation functions between
layers. Higher layer topologies are embedded in the lower

layer topologies, thus creating client-server relationships. For
a networked cloud resource management system it is essential
to be able to manage these layers jointly to allow connectivity
options at layers other than Layer 3 (IP) as well as to allow for
optimal management of network resources between the layers.
Path-finding in multi-layered environments has been shown to
be NP-hard [18].

One contribution of the project is to extend NDL to use a
more powerful ontology defined using OWL (Web Ontology
Language), an extension we call NDL-OWL. The power of
OWL derives from a richer (compared to RDF) vocabulary
for defining relationships among the resource types and among
the predicates in the ontologies that it describes. In addition
to hierarchical classes and predicates, OWL introduces logic-
expressive capabilities including class constraints like disjoint-
ness, intersection, union, and complement, property constraints
like transitive, symmetric, inversive, cardinality, etc.

An OWL ontology uses these capabilities to define the
structure and relationships of predicates and resource types
that make up the ontology’s vocabulary. Given knowledge
of these relationships in an ontology, an inference engine
can ingest an RDF document based on the ontology, and
manipulate it or infer additional properties beyond those that
are explicitly represented in the document. For example, in
NDL-OWL, the hasInterface and interfaceOf properties are
related in the ontology using the inverseOf property axiom in
OWL: thus software can infer the property in one direction
from a statement that the inverse property holds in the other
direction. We use the Transitive property axiom in OWL to
define interface connectivity and adaptation properties. These
features are useful for path finding algorithms. For example,
if a sequence of pairs of points are connected, an end-to-end
path can be inferred using the transitivity of a connectedTo
predicate.

The advantage of RDF/OWL approach is easy extensibil-
ity. Unlike XML-based approaches, no modifications to the
schema are required. The extension is performed by adding
new types of objects and relationships into the dictionary,
so they can be used to describe new types of resources. We
have extended NDL to enable it to describe various compute
capabilities. Current NDL-OWL, for example, includes the
definition of simple compute resources. It has a class called
UnitServer which defines a single server, with two floating
point parameters cpuCapacity and memoryCapacity (processor
speed and memory size, respectively). Both are restricted to
be floating point values:

<owl:Class rdf:about="#UnitServer">

<rdfs:subClassOf rdf:resource="#ClassifiedServer"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#cpuCapacity"/>

<owl:someValuesFrom rdf:resource="&xsd;float"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#memoryCapacity"/>

<owl:someValuesFrom rdf:resource="&xsd;float"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Below is a definition of a BENUnitServer which is an
‘instance’ of the UnitServer class and is a typical server found
in BEN network - a 1.8Ghz single-core with 4GB of RAM.
The topology:hasInterface stanza from the topology dictionary
describes the connectivity of the server to an aggregator
switch.
<compute:UnitServer rdf:about="#BENUnitServer">

<compute:cpuCapacity rdf:datatype="&xsd;float">1.8

</compute:cpuCapacity>

<compute:memoryCapacity rdf:datatype="&xsd;float">4.0

</compute:memoryCapacity>

<topology:hasInterface

rdf:resource="#UNC/Euca/GigabitEthernet/1/ethernet"/>

</compute:UnitServer>

It is worth noting that RDF-XML format for expressing
RDF and OWL [13], shown above, is only one of several pos-
sible syntaxes in which OWL models can be expressed. NDL-
OWL is currently used to request resources from the system
and by sites to advertise resources. In the course of the system
operation, the NDL-OWL model is loaded from a static file
expressed in RDF-XML format that describes the initial state
of the resources. This model is queried and updated in-memory
to reflect the current state of the network (e.g. connections
coming and going). The ultimate goal of this process is to
create a representation language that is sufficiently powerful
to enable generic resource control modules to reason about
substrate resources and the ways that the system might share
them, partition them, and combine them. Each resource control
action, such as allocating or releasing resources for a slice,
affects the disposition of the remaining substrate inventory.
To meet our goals, the declarative representation must also
capture these substrate-specific constraints on allocation and
sharing. These constraints are crucial for the resource control
plug-in modules in ORCA, which are responsible for allocating
and configuring substrate resources for each slice.

IV. THE STITCHING PROBLEM

One of the major tasks for resource orchestration system
such as ORCA is stitching different pieces of virtualized
resources from geographically distributed compute, network,
and storage substrate into a single connected configuration.
These configurations/slices are isolated from one another by
means of labels. In networks, various labels are used to isolate
and identify logical network segments (e.g. VLAN IDs for
Ethernet network, IP subnet for IP network, etc) or physical
network segment (frequency channels in optical network and
wireless network). In storage systems, logical unit number
(LUN) is used to identify a device or a fibre channel storage
port in a storage area network. In order to form isolated and
networked end-to-end infrastructure on demand, the different
pieces of resources from different providers must be stitched
together by negotiating labels between neighboring domains.
In this case by ’domain’ we mean substrate owned by a
single administrative entity. Edge domains generally represent
compute and storage resources, while transit domains provide
network connectivity.

VLANs represent the basic unit of connectivity in GENI.
VLAN service is also widely available from research back-
bones and commercial providers. Significant standards work

is extending the monitoring and management capabilities of
VLANs to allow them to operate reliably in multi-provider
setting: the GMPLS based Ethernet Label Switching (GELS)
standard in IETF and the PBB-TE (Provider Backbone Bridge
Traffic Engineering) to name a few. VLAN tags are the most
common type of label we have encountered in this project,
however our work easily generalizes to any other type of label
mentioned above.

In the course our work we have attempted to make no
restrictive assumptions about the behavior of the domains. In
our view domains can produce and/or consume labels. Label
producing domains generate labels that their neighbors can
accept and either convert or pass through. A label producing
domain may be a transit domain that creates a bandwidth-
guaranteed VLAN between two of its interfaces with a specific
VLAN tag. To be used in a slice this VLAN tag needs to
be consumed by the neighbor domains and either accepted,
translated or passed through (e.g. attaching resources to a
VLAN tag in an edge domain, VLAN tag translation or VLAN
tunneling in a transit domain, respectively).

An important assumption is that domains can be label
producers, label consumers or both - these represent inherent
properties of a domain. Thus negotiating a stitching operation
for a slice requires deciding on which domains will produce
and which will consume labels, a process that is constrained
by the topology of the slice and the capabilities of the
domains (i.e. domains that can only consume labels cannot
be expected to produce them). This problem resembles the
’dining philosophers’ problem, as one of the aspects of the
negotiation necessitates freedom from deadlocks between e.g.
two label producing domains. In ORCA operations on domains
during slice creation are done as part of the ’redeem’ operation,
thus, in effect, what is required is determining the order in
which multiple tickets from the user for components of the
slice are redeemed from different domains.

There are multiple approaches to this negotiation process.
If we simplify our view of a slice to a single path connecting
resources across multiple transit domains and make an as-
sumption that this inter-domain path has been computed, then
our options for negotiating labels across domain boundaries
can be enumerated as follows:

• Hop-by-hop stitching In this approach domains local
setup and produce or consume labels from their neigh-
bors. This process is usually assisted by signaling which
is done in two passes, as e.g. taken by GMPLS family
of standards, with the stitching done on the reverse pass
using the RESV message. The main disadvantage of the
approach is difficulty of dealing with deadlocks in a
generalized environment such as the one we describe. It
also incurs the longest provisioning delay as the signaling
message needs to go over each domain sequentially,
waiting for the completion of intra-domain provisioning
before proceeding to the next domain.

• Centralized stitching In this approach, a centralized
entity computes the labels for every domain on the path
and sends a request to each domain simultaneously to
complete the configuration. The primary disadvantage is
the lack of control by the domains and the single point

NLR FrameNet +
Sherpa

StarLight

BEN@RENCI

NOX

UMass

6509

65xx

NLR

6509

BEN@Duke

6509

65xx NLR

iGENI

EX3200

VM

Dome

ViSE

Dynamic VLAN
Static VLAN
ORCA-controlled
substrate

VM
DukeCS

BEN

EX3200

VM

6509

BEN@UNCBEN

Fig. 2. ORCA demo topology

of failure presented by this function.
• Coordinated stitching In this approach, each domain

reports limited capability information to a coordinating
entity (a number of which can exist). The coordinating
entity makes a decision about the order of redeem op-
erations and informs the domains. The domains perform
the resource allocation (in this case VLAN provisioning)
in specified order and inform their neighbors (if they are
label producers) or wait for their neighbors to complete
(if they are label consumers).

We have adopted the third option, as allowing the most flexi-
bility for future expansion. The coordinating entity decides the
order in which the user tickets are presented/’redeemed’ with
the different sites, the sites either report produced labels or
consume labels reported by other sites. Note that the process
of ordering these redeem operations translates into creating
multiple partial ordered sequences of domains in which la-
bel producing and consuming operations alternate between
adjacent domains. In our implementation, the coordinating
entity computes a domain dependency graph (which must
be a DAG to avoid deadlocks) of domain producer/consumer
relationships. For a simple path, this DAG looks like a ’forest’
with the root of each tree representing a domain that is
not dependent on any other domains (a label producer). The
domains at the roots of the trees are the first to honor the
redeems (i.e. perform their site resource allocations). The
coordinator then follows the DAG to arrange the redeems in
other domains, passing the label information down, until the
path is complete and a slice is stitched together.

Our current heuristic for computing dependency graphs for
a single path takes into account a number of domain attributes,
listed here in the order of decreasing priority:

1) Label type: Lower layers in the network are dealt with
first, due to the aforementioned client-server relationship
between the network layers.

2) Producer vs. consumer: Producers take precedence
3) Label translation capability: Domains not capable of label

translation are given precedence
4) Fixed peering relationship: Domains may have existing

fixed labels connecting them to neighbor domains, which
removes the need to negotiate labels

5) Nodal degree: Higher nodal degree domains are given
precedence

Computing these dependency graphs for generalized topolo-
gies is an area of active investigation for this project.

V. PROJECT STATUS AND FUTURE

We have deployed the ORCA software prototype in the BEN
network testbed and at other sites (see Figure 2). BEN is a
metro-scale dark fiber facility with several PoPs (Points of
Presence) in North Carolina’s Research Triangle. Each PoP in
a BEN network is equipped with a fiber switch, a DWDM
gear from Infinera supporting OTN and a L2/L3 switch/router
from Cisco. When creating slices, ORCA uses native TL1
and CLI interfaces of all of these network elements to create
appropriate crossconnects or circuits to support the multi-
layered topologies needed to create L2 VLAN connections
across BEN. At the edge of BEN we have deployed a number
of Eucalyptus [19] clouds exposing Amazon EC2 interfaces
for creating VMs on specific VLANs that ORCA can use
to instantiate VMs. ORCA also has an interface to NLR
Sherpa [20] tool - a CGI-based dynamic VLAN provisioning
service offered by NLR. Each of these domains (Eucalyptus
domains, BEN and NLR domains) have an ORCA actor respon-
sible for their configuration. Through the collaboration within
GENI we also have ORCA actors deployed at the StarLight
facility in Chicago, where ORCA controls a L2 switch, as well
as in UMass Amherst, where ORCA controls a weather sensor
testbed called ViSE [21].

The BEN and NLR sites expose a range of available VLAN
tags to an ORCA broker. NLR site is a ’label producer’ (it
generates a VLAN tag for the requested circuit), while BEN
site serves as both producer and consumer (it can accept and
translate incoming tags). Eucalyptus and testbed sites expose
their resources to the broker using NDL-OWL descriptions.
The user requests a specific slice configuration through a
GUI that generates NDL-OWL (in RDF-XML format) of the
request that is then processed by an ORCA agent to compute
the inter-domain path and the dependency graph. The agent
then requests tickets for necessary resources from the broker
and redeems them in the proper order to ensure slice stitching.
The sequence of redeems is shown in the timing diagram in
Figure 3. Instantiated VMs boot with two interfaces - one

for experimenter access over commodity Internet, the other
connected to the slice VLAN to facilitate intra-slice traffic.
Network elements are configured by the site actors responsible
for them. A private-address IP network is configured inside
this Layer 2 slice.

The particular experiment demonstrated at the GEC7 Con-
ference in March of 2010 creates an end-to-end slice by
instantiating a VM instance at the Eucalyptus cloud site on
Duke University campus and a Xen VM from the ViSE
testbed; it links them through the dynamically stitched VLANs
from several providers. It then launches an Apache Web
server on its Eucalyptus node, which provides an interface to
process and visualize radar data fed through the circuit from
the Xen node at UMass. The total slice instantiation time is
approximately 4 minutes.

!"#$"%&'&(')*+,'*--".*/&"01'

!"#$"%&'23!4+5"67/'0*89'&('

+&/60*:5&'*--".*/&"01'

;5"8'23!4+5"67/'7/&5'*%'6"/.1<'%&*&=5'

(8"'"8.'&(')*+,'&56($:5'+&/60*:5&>'

)3?2'&/:'&56($:5'

@$9"2"&'&('A,2'

+&/6&'@$9"',$=/017&$%'B5"8'@$9"2"&'

)3?2'&/:'*%'98(B8'

>%&/8.'$7'A,2'7/&5'

/8.'%&*&=5'&('+5"67/'

7/&5'/&'(8"'"8.<'/8.'

&('@$9"',$=/017&$%'

)C'(8'&5"'(&5"6D'

Figure 2: Instantiation schedule and completion times for elements of the demo slice. This figure is generated from timestamped
lease event traces collected from the ORCA server logs at each of the providers.

2.2 Network Control

Multiple high-speed national fabrics (NLR, I2, ESNet,
others) offer resource reservation mechanisms with dif-
ferent levels of abstraction. Some now offer automated
control planes (NLR Sherpa [24], I2 ION, ESNet OS-
CARS [15]) and inter-domain provisioning mechanisms
(I2 DCN, GLIF Fenius [10]) with external APIs. These
mechanisms make it possible to provide varying levels
of quality of service to meet a range of needs. The most
common abstraction offered by the national fabrics today
is a VLAN—a tagged Layer 2 circuit with possible band-
width guarantees that can be carried from one interface
of the fabric to another.
Network embedding is a multi-dimensional optimiza-

tion problem for which the inputs are the current state
of the substrate, availability and compatibility of differ-
ent interconnect technologies at the participating sites,
and the requested topology of the slice and its Quality
of Service profile. ORCA provides a pluggable interface
for such policies. Our prototype policy grants any re-
quest for which it can identify a feasible embedding, as
described below.
A local ORCA domain server runs for each network

transit provider. As with the ORCA server at each Eu-
calyptus site, these servers are generic except for plu-
gin scripts matched to the specific domain. For ex-

ample, an ORCA server directly controls the BEN net-
work, and runs plugins that emits configuration com-
mand sets to software drivers we developed for the na-
tive TL-1 interfaces of the fiber switches (Polatis) and
WDMDTNs (Infinera), and the CLI interface of the Eth-
ernet switches (Cisco). Another ORCA server runs dif-
ferent plugins that invoke the Sherpa API [24] to config-
ure layer-2 FrameNet paths through the National Lambda
Rail (NLR).
In the future, the degree of automation of networks

will increase. Networks will expose their capabilities and
will allow attachment of cloud edge resources at differ-
ent layers, including transport technologies like OTN or
SONET). These layers will carry encapsulated traffic of
cluster interconnects between different sites. Today com-
mon cluster interconnects are IP over 10G Ethernet or In-
finiband. GLIF (Global Lambda Interchange Facility) is
automating GOLE (GLIF Opel LightPath Exchange) op-
erations to allow provisioning of global WDM lightpaths
that are largely agnostic to the payloads they carry.

2.3 NDL-OWL
One focus of the project is to advance standards and
representations for describing network cloud substrates
declaratively. There is a need for a common declarative
language that can represent multi-level physical network

4

Fig. 3. Timing diagram showing redeem sequence

Our initial experience with the ontology-based approach
has been promising: the prototype demonstrates policies for
reliable dynamic provisioning of multiple, concurrent, isolated
slices of the BEN network, in tandem with Eucalyptus virtual
machines provisioned from the edge sites, all utilizing seman-
tic resource descriptions. We are extending our work to to
enrich the abstract view of the BEN network to include more
layers and edge resources. At the same time we are working
on developing new resource allocation policies with the focus
on embedding random topologies into the available substrate.

VI. CONCLUSION

This paper summarizes our experience in designing and
implementing a meta-control framework for managing dis-
tributed resources, capable of creating orchestrated connected
configurations of these resources on demand. The control
framework is free of any assumptions of the type of underlying
substrates and our goal is to build a general operational
system that will support many different types of resources
and serve many application domains. Our approach is enabled
by powerful architectural abstractions, a distributed implemen-
tation and a declarative ontology-based resource description
mechanism. Our demo serves as a proof of concept to show
how applications can interconnect and link resources through
dynamic circuits provisioned along with the VMs by a cloud
orchestration framework.

Acknowledgement. This work is supported by the Na-
tional Science Foundation GENI Initiative, NSF awards CNS-
0720829 and CNS-0910653, and an IBM Faculty Award.
The authors wish to thank Joe Mambretti for assistance with
deploying and maintaining experimental equipment in the
StarLight facility at Northwestern University, Chicago IL.

REFERENCES

[1] M. A. Vouk, “Cloud computing - issues, research and implementations,”
Journal of Computing and Information Technology, vol. 16, no. 4, Dec.
2008.

[2] Y. Wu, M. C. Tugurlan, and G. Allen, “Advance reservations: a theoret-
ical and practical comparison of gur & harc,” in MG ’08: Proceedings
of the 15th ACM Mardi Gras conference. New York, NY, USA: ACM,
2008, pp. 1–1.

[3] G. Zervas, “Phosphorus Grid-Enabled GMPLS Control Plane
(G2MPLS): Architectures, Services, and Interfaces,” in IEEE
Communications Magazine, Aug. 2008.

[4] S. Thorpe., L. Battestilli, G. Karmous-Edwards, A. Hutanu, J. MacLaren,
J. Mambretti, J. Moore, S. Sundar, Y. Xin, A. Takefusa, M. Hayashi,
A. Hirano, S. Okamoto, T. Kudoh, T. Miyamoto, Y. Tsukishima,
T. Otani, H. Nakada, H. Tanaka, A. Taniguchi, Y. Sameshima, and
M. Jinno, “G-lambda and EnLIGHTened: wrapped in middleware co-
allocating compute and network resources across Japan and the US,”
in GridNets ’07: Proceedings of the first international conference on
Networks for grid applications, 2007.

[5] I. Baldine, J. Chase, G. Rouskas, and R. Dutta, “At-scale experimentation
with resource virtualization in a metro optical testbed,” in Proceedings
of ICVCI, 2008, May 2008.

[6] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G.
Yocum, “Sharing Networked Resources with Brokered Leases,” in
Proceedings of the USENIX Technical Conference, June 2006.

[7] J. Chase, L. Grit, D. Irwin, V. Marupadi, P. Shivam, and A. Yumerefendi,
“Beyond Virtual Data Centers: Toward an Open Resource Control
Architecture,” in Selected Papers from the International Conference on
the Virtual Computing Initiative (ACM Digital Library), May 2007.

[8] A. Yumerefendi, P. Shivam, D. Irwin, P. Gunda, L. Grit, A. Demberel,
J. Chase, and S. Babu, “Towards an Autonomic Computing Testbed,” in
Workshop on Hot Topics in Autonomic Computing (HotAC), June 2007.

[9] J. Chase, I. Constandache, A. Demberel, L. Grit, V. Marupadi, M. Sayler,
and A. Yumerefendi, “Controlling Dynamic Guests in a Virtual Com-
puting Utility,” in International Conference on the Virtual Computing
Initiative (an IBM-sponsored workshop), May 2008.

[10] I. Constandache, A. Yumerefendi, and J. Chase, “Secure Control of
Portable Images in a Virtual Computing Utility,” in First Workshop on
Virtual Machine Security (VMSec), October 2008.

[11] H. Lim, S. Babu, J. Chase, and S. Parekh, “Automated Control in
Cloud Computing: Challenges and Opportunities,” in Proc. of the First
Workshop on Automated Control for Datacenters and Clouds (ACDC),
Jun. 2009.

[12] T. Berners-Lee, “Design issues: Architectural and philosophical points,”
in W3C, 2008.

[13] W3, “Resource description framework (RDF),”
http://www.w3.org/RDF/.

[14] J. Ham, F. Dijkstra, P. Grosso, R. Pol, A. Toonk, and C. Laat, “A
distributed topology information system for optical networks based on
the semantic web,” Journal of Optical Switching and Networking, vol. 5,
no. 2-3, June 2008.

[15] ITU-T. G.805 : Generic functional architecture of transport networks.
[Online]. Available: http://www.itu.int/rec/T-REC-G.805

[16] F. Kuipers and F. Dijkstra, “A path finding implementation for multi-
layer networks,” Future Generation of Computing, vol. 25, no. 2, Feb.
2009.

[17] “Global lambda integrated facility (glif),” http://www.glif.is/.
[18] F. Dijkstra, “Framework for path finding in multi-layer transport net-

works,” 2009.
[19] “Eucalyptus,” http://eucalyptus.cs.ucsb.edu/.
[20] “NLRFrameNet Dynamic VLAN Services/Sherpa,” http://globalnoc.iu.

edu/nlr/maps documentation/nlr-framenet-documentation.html.
[21] D. Irwin, N. Sharma, P. Shenoy, and M. Zink, “Towards a virtualized

sensing environment,” in Proceedings of the 6th International Confer-
ence on Testbeds and Research Infrastructures for the Development of
Networks and Communities, May 2010.

